Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
Parallelization and Optimization of Image Processing Applications
Šiška, Jakub ; Seeman, Michal (oponent) ; Černocký, Jan (vedoucí práce)
This Bachelor's Thesis was performed during a study stay at the École Supérieure d'Ingénieurs en Électronique et Électrotechnique Paris, France. It proposes solution for speeding up image processing algorithm and its adoption for use with real-time video stream from the infra red camera. The first part discusses characteristics and basic principles of the IR technology, followed by specifications of used camera. Ongoing text also proposes solution of problems concerning network communication with the camera. In addition, it describes camera's output stream format characteristics and solution for output visualisation. Substantial part of this work covers issues concerning parallelization and optimization of video stream and image file data processing. Problem of the parallelisation for this case is explained together with implemented parallelization method. Entire theoretical part is supported with the real results, benchmarks, which are presented in the last chapter.
Parallelization and Optimization of Image Processing Applications
Šiška, Jakub ; Seeman, Michal (oponent) ; Černocký, Jan (vedoucí práce)
This Bachelor's Thesis was performed during a study stay at the École Supérieure d'Ingénieurs en Électronique et Électrotechnique Paris, France. It proposes solution for speeding up image processing algorithm and its adoption for use with real-time video stream from the infra red camera. The first part discusses characteristics and basic principles of the IR technology, followed by specifications of used camera. Ongoing text also proposes solution of problems concerning network communication with the camera. In addition, it describes camera's output stream format characteristics and solution for output visualisation. Substantial part of this work covers issues concerning parallelization and optimization of video stream and image file data processing. Problem of the parallelisation for this case is explained together with implemented parallelization method. Entire theoretical part is supported with the real results, benchmarks, which are presented in the last chapter.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.